

Numerical behavior of the Keplerian Integrals methods for initial orbit determination

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

UNIVERSITAT POLITÈCNICA DE CATALUNY BARCELONATECH

Facultat de Matemàtiques i Estadística

Università di Pisa

Roma, 5-9 September 2022

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Introduction

- The Keplerian Integrals methods
- The data
- O Numerical results on synthetic data
- Sumerical results on real data
- Applications

Introduction

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Introduction

Initial orbit determination problem

Attempt to determine a preliminary orbit of an object from a set of observations.

• Orbit determination

Question:

How is defined each set of observations?

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Arc of observations

Optical observation

- Two angles (α, δ) giving a point on the celestial sphere.
- The topocentric distance of the asteroid ρ is unknown.

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Arc of observations II

Arc of observations

• Set of consecutive observations of the same object.

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Computing a preliminary orbit

- If the length of the arc is sufficiently large:
 - Gauss
 - Laplace
 - ...
- If the length of the arc is too short (TSA)
 Me can not deal with only one TSA

The linkage problem

The linkage problem consists in trying to join two (or more) TSAs to determine an orbit.

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Computing a preliminary orbit

- If the length of the arc is sufficiently large:
 - Gauss
 - Laplace
 - ...
- If the length of the arc is too short (TSA)

The linkage problem

The linkage problem consists in trying to join two (or more) TSAs to determine an orbit.

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Goal

Obtain linkages in a very large database.

Requirements for the method:

- Fast
- Recover a high percentage of solutions

We will study two methods:

- Link2 method (Gronchi et al, 2015) for linking two TSAs
- Link3 method (Gronchi et al, 2016) for linking three TSAs

Goal

Obtain linkages in a very large database.

Requirements for the method:

- Fast
- Recover a high percentage of solutions

We will study two methods:

- Link2 method (Gronchi et al, 2015) for linking two TSAs
- Link3 method (Gronchi et al, 2016) for linking three TSAs

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Goal

Obtain linkages in a very large database.

Requirements for the method:

- Fast
- Recover a high percentage of solutions

We will study two methods:

- Link2 method (Gronchi et al, 2015) for linking two TSAs
- Link3 method (Gronchi et al, 2016) for linking three TSAs

The Keplerian Integrals methods

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Given a set of $m \ge 2$ optical observation, also called **tracklet**, $\{(\alpha_i, \delta_i) \mid i = 1, ..., m\}$ obtained at different times t_i , i = 1, ..., m, it is possible to compute the attributable vector

$$\boldsymbol{\mathcal{A}} = (\alpha, \delta, \dot{\alpha}, \dot{\delta}),$$

at the mean time $\bar{t} = \frac{1}{n} \sum_{i=1}^{m} t_i$.

Goal

Determine ρ and $\dot{\rho}$ joining two or more tracklets and therefore a preliminary orbit.

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

The KI methods

The idea of the Keplerian integrals (KI) methods is to exploit the conservation laws of Kepler's dynamics to write down equations for the linkage.

The conserved quantities are

 $oldsymbol{c} = oldsymbol{r} imes \dot{oldsymbol{r}},$ (angular momentum) $\mathcal{E} = rac{1}{2} |\dot{oldsymbol{r}}|^2 - rac{\mu}{|oldsymbol{r}|},$ (energy) $oldsymbol{L} = rac{1}{\mu} \dot{oldsymbol{r}} imes oldsymbol{c} - rac{oldsymbol{r}}{|oldsymbol{r}|},$ (Laplace-Lenz vector)

Idea of the methods

Link2

Given two attributables $\mathcal{A}_1, \mathcal{A}_2$ we consider the system

$$m{c}_1 = m{c}_2, \qquad [\mu(m{c}_1 - m{c}_2) - (\mathcal{E}_1m{r}_1 - \mathcal{E}_2m{r}_2)] imes (m{r}_1 - m{r}_2) = m{0},$$

where the subscripts refer to the two epochs.

By elimination of variables we obtain a **polynomial equation of degree 9** in ρ_1 or ρ_2 .

Link3

Given three attibutables \mathcal{A}_1 , \mathcal{A}_2 , \mathcal{A}_3 we consider the system

$$\boldsymbol{c}_1=\boldsymbol{c}_2,\qquad \boldsymbol{c}_2=\boldsymbol{c}_3,$$

that is by using the conservation law of angular momentum only.

By elimination of variables we obtain a **polynomial equation of degree 8** in ρ_2 .

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Indicators: χ_4 , Δ_{\star} and rms

The preliminary orbits computed with the both algorithms have an associated covariance matrix. From this information we use:

- The χ_4 norm for the Link2 algorithm.
- The star norm (Δ_{\star}) for the Link3 algorithm.

Another metric that can be used to measure the quality of preliminary orbits is the rms of the observations

$$rms = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \Delta_{\alpha_i}^2 \cos^2 \delta_i + \Delta_{\delta_i}^2}$$

with $\Delta_{\alpha_i} = \alpha_i - \alpha(\bar{t}_i), \Delta_{\delta_i} = \delta_i - \delta(\bar{t}_i)$, where the computed values $\alpha(\bar{t}_i), \delta(\bar{t}_i)$ in the residuals comes from a two-body propagation.

The Test dataset

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Test dataset

The datasets that we consider are structured as follows:

- N different physical objetcs
- $\bullet~3~{\rm TSAs}$ per object
- different number of observations per TSA.

TSA 1	TSA 2	TSA 3	TSA 4	TSA 5	TSA 6	TSA 7	TSA 8	TSA 9	TSA 10	• • •
3 obs	3 obs	4 obs	3 obs	5 obs	3 obs	3 obs	4 obs	3 obs	3 obs	

Different datasets:

- Real observations
- Simulated 2-body propagation \leftarrow with 0''/0.1''/0.2''/0.5''/1.0'' astrometric error
- Simulated *n*-body propagation \leftarrow with 0''/0.1''/0.2''/0.5''/1.0'' astrometric error

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Test dataset

The datasets that we consider are structured as follows:

- $\bullet~N$ different physical objetcs
- 3 TSAs per object
- different number of observations per TSA.

TSA 1	TSA 2	TSA 3	TSA 4	TSA 5	TSA 6	TSA 7	TSA 8	TSA 9	TSA 10	•••
3 obs	3 obs	4 obs	3 obs	5 obs	3 obs	3 obs	4 obs	3 obs	3 obs	

Different datasets:

- Real observations
- Simulated 2-body propagation \longleftarrow with 0''/0.1''/0.2''/0.5''/1.0'' astrometric error
- Simulated *n*-body propagation \longleftarrow with $0^{\prime\prime}/0.1^{\prime\prime}/0.2^{\prime\prime}/0.5^{\prime\prime}/1.0^{\prime\prime}$ astrometric error

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Test dataset

\bullet We will consider the different datasets described previously with N=822

Time distribution of the tracklets in the data sample (left) and time difference between pairs of tracklets for the same object (right).

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

TSA X TSA Y

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

STARDUST

Two natural questions:

Question 1:

What % of true solutions have we recovered?

Question 2:

Which is the number of false solutions?

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Synthetic data - Numerical results

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Percentage of solutions recovered with each method

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Quality of the solutions (ex. plane of motion)

Least square orbit

Values of the logarithm of the residual R_{LS} of the least squares orbits obtained from the preliminary orbits computed with Link2 as a function of the logarithms of the χ_4 and the rms with the synthetic data using a n-body propagation without error, 0.1''error and 0.2'' error (from left to right). In red the preliminary orbits that do not converge in the differential correction scheme.

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Question 1: What % of true solutions have we recovered?

High! We recover a high percentage of solutions and the quality is good if we consider datasets with lower astrometric error.

But... How to deal with multiple solutions?

Answer: Selecting the best one using the χ_4 , Δ_{\star} , rms...

Number of false solutions

Question 2: Which is the number of false solutions?

We obtain a large number of false solutions

Example: With the dataset n-body 0.2'' we obtain more than 1 million of false solutions.

How to deal with it?

```
Same answer: Using the \chi_4, \Delta_{\star}, rms...
```


Link2: All vs all least squares orbits

Plot of the residual of the least square orbits of the true linkages (green scale) and false linkages (hot colors) with the synthetic data and a n-body propagation without error, 0.1'' error and 0.2'' error (from left to right).

Real data - Numerical results

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Distribution of the astrometric error

In the synthetic data we assume that the error is independently distributed following a 2D Gaussian distribution.

In this way, the astrometric error in the observation (α_i, δ_i) is given by

$$e_i = \operatorname{sign}(\Delta_{\alpha_i}) \sqrt{\Delta_{\alpha_i}^2 \cos^2 \delta_i + \Delta_{\delta_i}^2} \sim N(0, \sigma^2),$$

where $\Delta_{\alpha_i} = \alpha_i^* - \alpha_i$ and $\Delta_{\delta_i} = \delta_i^* - \delta_i$ being (α_i^*, δ_i^*) the perfect observation.

And in the real data?

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Distribution of the astrometric error

Normalized histogram of the astrometric error for the *n*-body data sets with 0.1'' and 0.2'' error and the real data (from left to right).

Distribution of the astrometric error

The distribution of the error is more or less normally distributed.

Dataset	Expected μ	Computed μ	Expected σ	Computed σ
n-body 0.1	0	0.0073	0.1	0.1088
n-body 0.2	0	0.0037	0.2	0.2099
real	-	0.0593	-	0.2227

But if we randomly select two observations per tracklet and compute the correlation between the errors of these observations we obtain a significant correlation (> 0.5) in the case of real data:

	n-body 0.1	n-body 0.2	real
Correlation	0.0365	0.0458	0.5206

Percentage of solutions recovered with each method

Similar results

The percentage of recovered linkages with both methods is quite similar to the one obtained for the synthetic population (with 2-body or n-body propagation) with astrometric error of 0.2''.

Quality of the solutions

Link2: All vs all least squares orbits

Plot of the residual of the least square orbits of the true linkages (green scale) and false linkages (hot colors) with the synthetic data and a n-body propagation with 0.2'' error (left) and the real data (right).

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Applications

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

The Isolated Tracklet File

ITF

The Isolated Tracklet File (ITF) from the Minor Planet Center (MPC) is a repository of more than 9 million unlinked detections.

What does the ITF look like?

CA1962I	KC2019	11	24.24031 11	04	01.03 -07		14.7	17.9 R	
CA1962I	KC2019	11	24.24531 11	04	01.54 -07		28.9	17.8 R	
CA1962I	*KC2019	11	24.24719 11	04	01.68 -07		32.7	17.8 R	
P10Wsaz		01	22.64206911	37	01.692+40	07	17.25	22.08wU	
P10Wsaz		01	22.64848811	37	02.125+40	07	32.60	22.18wU	
P10Wsaz		01	22.65490711	37	02.558+40	07	47.93	22.08wU	
P10Wsaz		01	22.66136711	37	03.001+40			21.88wU	
P20WZxd		01	25.49526 09		10.701+03			20.6 wU	F
P20WZxd		01	25.50853 09		05.373+03		25.15	20.8 wU	F
P20WZxd		01	25.52166 09		00.100+03	52	10.19	20.9 wU	F

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

The Isolated Tracklet File

ITF

The Isolated Tracklet File (ITF) from the Minor Planet Center (MPC) is a repository of more than 9 million unlinked detections.

What does the ITF look like?

CA1962I	KC2019	11	24.24031 11	04	01.03 -07	33	14.7	17.9 R	95
CA1962I	KC2019	11	24.24531 11	04	01.54 -07	33	28.9	17.8 R	95
CA1962I	*KC2019	11	24.24719 11	04	01.68 -07	33	32.7	17.8 R	95
P10Wsaz	C2020	01	22.64206911	37	01.692+40	07	17.25	22.08wU	F5
P10Wsaz	C2020	01	22.64848811	37	02.125+40	07	32.60	22.18wU	F5
P10Wsaz	C2020	01	22.65490711	37	02.558+40	07	47.93	22.08wU	F5
P10Wsaz	C2020	01	22.66136711	37	03.001+40	08	03.35	21.88wU	F5
P20WZxd	C2020	01	25.49526 09	09	10.701+03	48	38.89	20.6 wU	F5
P20WZxd	C2020	01	25.50853 09	09	05.373+03	50	25.15	20.8 wU	F5
P20WZxd	C2020	01	25.52166 09	09	00.100+03	52	10.19	20.9 wU	F5

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke

Pan-STARRS1 (F51)

Pan-STARRS1:

The Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1).

https://panstarrs.stsci.edu/

Some data:

- \bullet > 4 million observations in the ITF
- $\bullet > 1$ million different tracklets in the ITF.

Pan-STARRS1 (F51)

Pan-STARRS1:

The Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1).

https://panstarrs.stsci.edu/

Some data:

- $\bullet > 4$ million observations in the ITF
- $\bullet > 1$ million different tracklets in the ITF.

Applications and work in progress:

• We used Link2 as a first step to do a complete exploration of the ITF F51.

And also...

• Application to space debris using the data provided by the TAROT Network (joint work with Carlos Yañez).

Thank you!

Applications and work in progress:

• We used Link2 as a first step to do a complete exploration of the ITF F51.

And also...

• Application to space debris using the data provided by the TAROT Network (joint work with Carlos Yañez).

Thank you!

Óscar Rodríguez, Giovanni Gronchi, Giulio Baù & Robert Jedicke